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Abstract-This paper deals with the analysis for the cooling of a flat plate in a convective flow, taking 
into account the longitudinal heat conduction through the plate. The energy balance equations reduce to 
a single one-parameter integro-differential equation, for the evolution of the temperature of the plate. An 
asymptotic analysis based on the multiple scale technique is used it, order to obtain an analytical solution 
of the studied problem. Two time scales appear in the asymptotic limit of a very good conducting plate. 
At time r = 0, the plate at a temperature different from that of the fluid is placed parallel to the fluid 
stream. For large but finite plate thermal conductivity, a rapid transient generates and the temperature 
adjusts itself to a pseudo-equilibrium condition, needed for the slow further evolution of the plate tem- 
perature. Both laminar and turbulent boundary layer flows are considered and the three term asymptotic 
solution is compared with the numerical solution of the governing equation. A very good agreement is 

achieved even for values of the heat transfer parameter of the order of unity. 

INTRODUCTION 

THE STUDY of the coupled heat transfer processes 
between heat convection and heat conduction is very 
important because of the simultaneous effects in prac- 
tical heat transfer processes. The effect of wall heat 
conduction on convective heat transfer, has been ana- 
lysed in ref. [I]. Luikov [2] and Payvar [3] analysed 
the problem where the lower surface of a flat plate of 
finite thickness is maintained at a constant and uni- 
form temperature. At the upper surface of the plate, 
heat is convected to a laminar boundary layer. Luikov 
[2] made two approximate solutions, one based on a 
differential analysis with low Prandtl number and the 
second based on an integral analysis with polynomial 
velocity and temperature profiles. He concluded that 
for Brun numbers larger than 0. I, the plate thermal 
resistance can be neglected. Payvar [3] used the Light- 
hill approximation [4] for large Prandtl numbers, to 
obtain an integral equation which has been solved 
numerically. He obtained asymptotic solutions for 
large and small Brun numbers. Axial conduction was 
not taken into account, in both these works. Heating 
(or cooling) of a flat plate in a convective flow was 
analysed by Sohal and Howell [S] and Karvinen [6]. 
In both of these works. the Lighthill approximation 
has been employed and an integro-differential equa- 
tion for the plate temperature evolution has been 
derived. In ref. [5], a numerical technique has been 
used to solve this equation. Karvinen [6] used an 
iterative method to solve the integro-differential 
equation for both steady-state and transient cases. He 

obtained good agreement with experimental results. 
Perturbation techniques in order to solve analytically 
the integro-differential equation resulting from the 
externally heated flat plate in a convective flow were 
used in ref. [7]. This equation has only one parameter, 

a(, defined as the ratio of the thermal resistance of the 
fluid to that of the plate. For large values of this 
parameter (very good conducting plate). a regular 
perturbation approach is applied using Ii% as the 
small parameter of expansion. On the other hand. for 
very small values of this parameter, a singular per- 
turbation technique has been employed (matched 
asymptotic expansion) in order to study the plate 
temperature evolution. The leading term of the expan- 
sion (r = 0) has a self-similar solution and the integral 
equation has been numerically solved. For small 
values of a two boundary layers develop at both edges 
of the plate. These boundary layers. however. have 
only local effects and the leading order solution give 
accurate results for small values of c( even for this 
singular problem. For a = 0. the cooling process has 
been analysed in ref. [7]. However, for the case of large 
values of a the cooling process cannot be analysed 
using the same regular perturbation techniques used 
in that paper [7], because this series breaks down in 
the first-order terms. 

The objective of the present work is to study this 
cooling (or heating) process, for both laminar and 
turbulent flow over a smooth surface, using multiple 
scale analysis due to the generation of rapid transients 
during the process. 

FORMULATION 

The physical model analysed is the following. A 
thin flat plate of length L, thickness 2h at initial tem- 
perature T,,,, is placed parallel in a forced flow of an 
incompressible fluid with velocity U, and tem- 
perature T,, at time t = 0. The thermal conductivity 
of the plate material enables heat conduction through 
the plate. Both edges of the plate are assumed to 
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NOMENCLATURE 

c g specific heat of fluid 
c 

y‘ 

specific heat of the plate material 
non-dimensional function introduced in 
equation (21) 

I1 half thickness of the plate 

L length of the plate 
NM Nusselt number, - qJ[( T,,- T,)i,] 
Pr Prandtl number, (pc/iL), 

q, heat flux transferred by convection 
Re Reynolds number of the flow, U,p,L/p(, 

Re, critical Reynolds number 
s non-dimensional strained time defined 

after equation (14) 
t time 

1, characteristic time defined in equation (10) 

T, temperature of the plate 
T 

PO 
initial temperature of the plate 

T, fluid temperature far from the plate 

C’ z fluid velocity far from the plate 

x, .r Cartesian coordinates. 

Greek symbols 

tl non-dimensional parameter defined in 

equation (9) 

value of a for laminar flow 
value of c( for turbulent flow 
small parameter of expansion defined in 
equation (12) 
non-dimensional transversal coordinate 

defined in equation (2) 
non-dimensional plate temperature 
defined in equation (2) 
thermal conductivity of the fluid 
thermal conductivity of the plate material 
viscosity coefficient of the fluid 

density of the plate material 
non-dimensional fast time variable 
defined after equation (14) 
non-dimensional time defined in 
equation (2) 
non-dimensional time for laminar flow 

non-dimensional time for turbulent flow 
non-dimensional longitudinal coordinate 
defined in equation (2) 
position of the transition region 
constants introduced after equation 

(14). 

be adiabatic, for simplicity. For small times, heat is 
transferred to the fluid in a uniform way. As the ther- 

mal boundary layer develops, a temperature gradient 
is produced in the plate, thus conducting heat 
upstream. Finally, this heat is transferred to the fluid 

in regions close to the leading edge. The energy bal- 
ance equation in the plate is 

a2 Tp/d.u’ + d2 TJi?y ’ = pscJE., dT,/dt (1) 

where T, corresponds to the plate temperature ; .Y and 
_r correspond to the Cartesian coordinates longi- 
tudinal and transversal, respectively. The origin is 

The characteristic time t, is defined later. Due to the 
fact that the non-dimensional temperature of the plate 
is a function of 0, = np(X,q.r), it is convenient to 
introduce a simplification that makes possible an ana- 
lytical solution of the studied physical problem. We 
suppose that the temperature of the plate is a function 
of the longitudinal coordinate X and time T, in a first 

approximation. The restrictions associated with this 
approximation are pointed out later. In this case, we 
assume that fl, is given by 

located in the upper surface of the plate at the leading where E is a small number compared with unity, to be 

edge. The time is designed by t. p.. c, and A, correspond defined later. Introducing relation (4) in equation (3). 
to the density, specific heat and the thermal con- this equation transforms to 

ductivity, respectively. The boundary and initial con- 
ditions are given by 

T, = Tpo at t = 0 ; ZT,j&u = 0 at x = 0 and L ; 

is2T,jE~~= -q,at_r=O: t?T,/@=Oat~= -h 

where yc corresponds to the heat convected to the fluid 
in the upper surface. Introducing the following non- 
dimensional variables : 

0, = CT,-T,)/(T,-7-z); x = xl-5 

r/ = y/h ; 7 = t/t, (2) 

equation (1) takes the form 

(h/L)‘~2f~,/d~‘+d’Op/ir~2 = [p,c,h2/(A,t,)] dO,/?T. 

(3) 

Integrating equation (5) in the form 

j’ 
1 ldv I, 

and neglecting terms of higher order, we obtain in a 
first approximation 

(h/L)‘?‘fl,/ilx’-(Nu/x)(i.,/i.,)(h/L) 

= p,c,h’:(i,t,) i?O,/dz. (6) 

In this equation, both boundary conditions at r = 0 
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and --!I have been applied. The Nusselt number Nu 
is given by 

NU = - q,x/[ ( T, - T, )i.,] 

where i, represents the fluid thermal conductivity. 
Due to the fact that the characteristic times in the 
fluid are in general very small compared with the 
characteristic times in the solid, we can assume the 
quasi-steady approximation in the fluid phase. The 
solution of the energy equation in the fluid can be 
obtained using the asymptotic Lighthill approxi- 
mation, derived for the case of small thermal bound- 
ary layer thickness compared with the momentum 
boundary layer thickness. The Nusselt number can be 
given as 

where Pr is the Prandtl number, Pr = pgcglig, and Re 
the Reynolds number based on the length of the plate, 
Re = U,p,L/p,. The subscript 1 represents the con- 
ditions at the leading edge of the plate. The kernel of 
the integral in equation (7) is given by 

K(X, x’) = (1 -W/x)“} -<. 

The constants a, b, c, n and M depend on the flow 
characteristics. Table 1 gives the values for the laminar 
and turbulent boundary layer flows over a smooth 
plate. 

Introducing equation (7) in equation (6) gives 

ad2B,dX2 = ae,z~+[s,+I:K(X.X’)dO’]/(X)‘-n. 

(8) 

Here, the subscript 0 has been taken out for simplicity. 
The integro-differential equation (8) gives the evol- 
ution of the temperature of the plate and contains 
only one parameter r defined as 

2 = (h/L)(i.,/i.,)(a Pr”’ Re”)- ‘. (9) 

This parameter represents the relation between the 
heat conducted through the plate to that convected to 
the fluid. For a >> 1 the heat conducted through the 
plate is very large. thus not admitting large tem- 
perature longitudinal gradients. On the other side, for 
a CC 1, the heat convection to the fluid is the most 
important. The characteristic time r, then is given by 

fC = hLp,c,[aE., Re” Pr”‘]- ‘. (10) 

Table 1 

Laminar flow Turbulent flow 

: 
0.332 0.0287 

314 S/IO 
c l/3 1.9 
M 113 315 
n 112 S/IO 

Integrating equation (5) now in the form 

i 
1 ldx 0 

this equation reduces in a first approximation 

&C?/d?f’ 

= psc,h2/A, dt/dt o”/dr 
is’ 1 

Qodx (11) 
0 

From this relation we can obtain the definition for E 
as 

E = a(h/L)(i,/i,) Re” PI”’ << 1. (12) 

Equation (12) gives the restriction in using the 
approximation introduced previously. From equa- 
tions (9) and (12), the value of a has to be much 
greater than (h/L) * which gives us a wide range in the 
validity of the approximation introduced. The initial 
and boundary conditions are given by 

e(x,O)=l and a0/ax=O at x=0,1. (13) 

The temperature of the plate is then 0 = F(x, T, a). 

The solution of the integro-differential equation can 
be obtained in the asymptotic limits, a >> 1 and a << 1. 
In the following section, the asymptotic limit a >> 1 is 
obtained 

ASYMPTOTIC LIMIT 01>> 1 

For large values of a the plate temperature varies 
little in the streamwise direction. A regular expansion 
of the form 

0 = f&(T)+ f i/a'o,(x,T) 
j=l 

breaks down in terms of the order of l/a. because the 
appearance of transients ‘of the order of l/a in the 
non-dimensional time. The solution can be obtained 
using the multiple scale analysis, assuming the fol- 
lowing expansion : 

where 

e = O,(S) + f l/a’O,(x, s, 6) 
j-I 

(14) 

s = t(l+w,/a+w,/a’..~); 0 = a7 

represent the two time scales presented in the problem. 
The constants oi appear in order to cancel the secular 
terms arising in the solution. Introducing equation 
(14) into equation (8) we obtain the following set of 
equations : 

a2eo/ax* - ae,/ab = 0 (15) 
a2t++,/a+ae,+,laa 

= aojias+w,ae,_,/as+ . . . 

+[8,,+~~~(x,X.)dB;]l(X)‘” for allj. (16) 
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The boundary conditions are given by 

BO(x.O. 0) = 1 : 0,(x, 0.0) = 0 for j > 0 

L%,/?x = 0 at x = 0,i for all j. 

The solution of equation (15) together with the 
boundary conditions gives that 0,) = G,(s). The first 
equation in equation (16) is given by 

d20,/C~1-Z0,i& = dO,ids+O,/(x)‘-“. (17) 

Integrating equation ( 17) in the form 

J [ ldx 
n 

and applying the adiabatic boundary conditions at 
both edges of the plate, we obtain 

- a/a0 
S’ 

0, dx = d&,/dr+(l/n)&. (18) 
0 

The equality has to be zero in order not to allow 
the appearance of secular terms. Applying the initial 
condition for BO, the solution of equation (18) is given 

by 

B0 = exp (-r/n). (19) 

Below we will concentrate on the laminar case, giving 
only the final results for the turbulent case. For the 
laminar boundary layer, equation (17) takes the form 

d%,/CX*-H,/da = e,[l/(x)“‘-2]. (20) 

The initial and boundary conditions for 8, are given 

by 

0,(x,0,0) = 0; %,/ax = 0 at x = 0,l. 

In order to reduce equation (18) to a homogeneous 
differential equation it is convenient to introduce the 
function .4(x_ a) in the following way : 

0, = 0~413x3 +*+g(X,a)]. (21) 

The equation for g is then given by 

?‘glix’ - dgji’a = 0 (22) 

with the initial and boundary conditions 

g(x, a = 0) = x’ -4/3x3 ’ ; 

?g,/?x = 0 for x = 0,l. (23) 

The solution of equations (22) and (23) can be obtained 
with the help of the Fourier transform method, giving 

% 
9(X3 a) = 1 a, cos (xix) exp (-j%?o) (24) 

,=11 

with the Fourier coefficients, a, given by 

where ho = 1 and 6, = 2 for j > 0. Evaluating these 
coefficients, the solution for 0, is therefore 

O,(x.s.a) = 1 -l/5+4/3%’ Z-x’+(27t)’ Z 

x i cos(njX)exp(-J’rr’a)‘(jn)~ * exp(-2.7). 
,- I 1 

(3 
The equation for Hz is 

= -2/l,, 
i 

w, - 1/5+4;‘3~“‘+~+~(2n) 

x 1 cos (n.jx) exp (-.jYa)/(.j~t) ’ ’ 
,- I 

- l,‘J(4x) - 1/5+J(27r) 
[ 

x f_ exp ( -j2$a)/( jx) 5’2 
,= I ]j+4,/Jxj)-Wl 

X 
[ 

-2X’+ZJx’-J(27r) i sin(njx) 
,‘I 

x exp ( - ,j’7r’a)/(jrc)3,” 1 dx’. (24) 
Integrating equation (26) in the streamwise direction 
from the leading edge to the trailing edge and applying 
the adiabatic boundary conditions at both edges, we 
obtain 

-20,{w, + l/5+8/15/1(8/3,2/3) -2/38(2,2/3)f 

-q (2x)0, i exp (-j’rr’a)/(jin)‘;’ 

x {-4(3jn) i J’X’ cos (.jnx’) dx’ + 1 /( jn) 

+ 1 l(4.P) . 

(27) 

Secular terms arise for the non-vanishing value 
between brackets in the first term on the right-hand 
side of equation (27). Therefore, w, is 

0, = - 1;5-Sll58(8/3.2/3)+2/38(2,2/3) 

2 + 0.009893. 

Figure 1 shows O2 e” as obtained from the numerical 
solution of equation (26), for different values of the 
non-dimensional time a. In the case of turbulent flow, 
it can bc shown, following the same procedure, that 
the non-dimensional temperature of the plate up to 
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FIG. 1. Evolution of the second-order term, OJ&,. as a function of x for different values of the non- 
dimensional fast time u. 

first order, can be written as 

0(x, S, a) = exp (-S/4) - 5/8x’ 

+25/36x”’ -j/126+0.71953 c cos(n.j~) 
,= I 

xexp(-j2n’a)/(jn)14” I) +0(1/a’) (28) 

and w, z 0.00072672. It is to be noted that a, s and 
0 are defined differently in both cases, laminar and 
turbulent boundary layer. In the next section we will 
present the numerical calculations obtained by solving 
the integro-differential equation and compare it with 
the asymptotic solution deduced in this section. 

RESULTS AND DISCUSSION 

For large values of a, that is a + co, equation (19) 
gives the non-dimensional temperature of the plate as 
a function of the non-dimensional time. Due to the 
fact that a and the characteristic time are not defined 
in the same way, for laminar and turbulent boundary 
layers, it is convenient to relate one to each other as 

aT = [I 1.56794Prm4”’ ReW3”‘]aL 

where aT and aL, correspond to the values of a for 
turbulent and laminar flow, respectively. In the same 
form, we can relate the non-dimensional times 7 used 
for both laminar and turbulent flows as 

7T = [0.086445Pr4”’ Re’ "1~~. 

In this asymptotic limit, a + cc), the ratio of the tem- 
peratures of the plate cooled by turbulent and laminar 
flows is given from equation (19) as 

0,/O, = exp {2-0.1080562Pr4”s Re3"o}7,. (29) 

Figure 2 shows this ratio as a function of the non- 
dimensional time 7 defined for laminar flow (TV), for 
different Reynolds numbers and Prandtl number of 
unity. Of course this is valid if the whole boundary 
layer is either laminar or turbulent. As the Reynolds 
number increases, the plate temperature decreases fas- 
ter in comparison with the laminar case. If the Reyn- 
olds number is only slightly larger than the critical 
Reynolds number of the flow, both types of flow struc- 
tures coexist-laminar flow upstream of the tran- 
sition zone and turbulent flow downstream. Assuming 
this transition zone to be very small compared with 
the length of the plate, in the limit a + CC we have 
that the governing equation is given by 

a,a2e/aX2 = ae/a7,+qJx, for 0 < x < X, (30) 
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0.00 O.&D 0.40 0.00 0.20 
?L 

1.00 

FIG. 2. Non-dimensional temperature ratio (turbulent/laminar) for different Reynolds numbers and 

Pr= l.inthelimita+x. 

a,d20!dx2 = d0/dr,+o/X2 ‘O, for XC < x < 1 (31) For xc = 0 we recover the pure turbulent flow and for 

where xC corresponds to the position of the transition 
xc = 1 the laminar flow solution is reproduced. 

region (RP = Re,). Integrating equation (30) in the 
Figure 3 shows the non-dimensional temperature 

form 
profiles as a function of x, for three different values 
of X. for 7 = 0.05, for the laminar flow. For a = 100. 

r. 

J ^‘[ ldx 
0 

and equation (31) in the form 

l-1 

J [ ldx 
x, 

and applying the adiabatic boundary conditions at 
both edges. we obtain 

x,WSX~~, = dO/dr,x, +20 Jx, (32) 

- r,dO/?& = r’~/~~~(l-~~)+10/80(1-~,8:‘~). (33) 

Because of the continuity of the plate temperature and 
the heat flux at the position of the transition zone, we 
obtain from equations (32) and (33), the evolution 
equation for the plate temperature as 

dW7,ktc + (03~)(7~/7~)(I - xc)1 

= - tl[ZJx + 1 O/S(a,/a,)( 1 - xf’ “‘)I 

the solution to which is given finally by 

I) = exp { - [2JxC +0.1080572Pr4’5 

x &?~““(I -x>‘“)]r,_}. (34) 

the temperature is uniform and the leading term in 
the asymptotic expansion gives the temperature evol- 
ution. However, for values of a = 1. there is an impor- 
tant temperature difference between the leading and 
trailing edges of about 12%. due to the finite thermal 
conductivity of the plate material. For a = 5, a tem- 

perature difference, between both edges, of about 5% 
is found from the two-term asymptotic solution given 
by equations (19) and (25). The corresponding soiu- 
tion to turbulent flow is given in Fig. 4. Though the 
trends are found to be qualitatively the same for both 
laminar and turbulent flows. the crossing point of the 
non-dimensional temperature profiles with that given 
for large a (or aT), is shifted to the leading edge in the 
case of turbulent flow, thus indicating that the effect 
of the thermal conductivity of the plate is larger for 
turbulent flow. For larger values of c+, the cooling 
effect is more effective for turbulent flow. 

Figure 5 shows the comparison of the two-term 
asymptotic expansion with the numerical calculation 
of the integro-differential equation, for a = 5 and 
different non-dimensional times, for the case of a lami- 
nar flow. The numerical technique used for solving 
the integro-differential equation (8), is described else- 
where [S]. The asymptotic analysis gives very good 
results for values of a = 5. The error introduced in 
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0.90 - 

a=s____----- 

._._. - ._._. -.- ._._. _-- 

FIG. 3. Non-dimensional temperature profiles for different values of a at T = 0.05 (laminar flow), as 
obtained with the two-term asymptotic expansion. 

0.020 

6, 

0.000 

o.mso 

0.220 

0.200 I I I 
0 

I 1 
0.20 0.40 0.00 0.00 LOO 

x 

FIG. 4. Non-dimensional temperature profiles for different values of a7 at ‘5T = 0.05 (turbulent flow). 
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6 1.00 

0.60 

0.60 

0.40 

0.20 

0.00 
c 

r(=5 

*=o.s 
---- * ___-__-____-_ _ 

t= I. 

I I I I I 
I BP0 0.40 0.60 0.80 t .oo 

x 

FIG. 5. Non-dimensional temperature profiles at different times. for a = 5 (laminar 8ow) : ----. asymp- 
totic solution; - - - - - -, numerical solution. 

FIG. 6. Non-~mensionai temperature profiles at different times, for GI = 1 (laminar tlowl : _-- , asymp- 
totic solution ; - - - - - -. numerical solution. 
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this case is not larger than 3%. The case of a = 1 is 
shown in Fig. 6. In this case, the errors introduced are 
much larger than in the previous case, giving errors 
of the order of 6%. A new term in the asymptotic 
expansion is needed for values of a close to unity. 
Figures 7 and 8 show the influence of the third term 
in the asymptotic expansion on the temperature evol- 
ution for a = 1 and two different times. It is shown 
here that the three-term asymptotic expansion repro- 
duces the numerical solution in portions of the middle 
of the plate. Still a difference is noted at both edges of 
the plate. Figure 9 shows the non-dimensional tem- 
peratures at both edges as a function of the non- 
dimensional time, for a = 5 and laminar flow. This 
temperature difference between both edges, remains 
of the same order as 7 increases. For values of 7 > 3, 
practically the temperature of the plate reaches the 
stream temperature. Finally, Figs. 10 and 11 show the 
non-dimensional temperature evolution in the trailing 
edge of the plate for two different values of aL (S,lOO), 
exposed to a turbulent boundary layer flow, for 
different Reynolds numbers and a Prandtl number of 
unity. 

CONCLUSIONS 

In this paper, the cooling process of a flat plate in 
a convective flow, has been analysed using asymptotic 
techniques. The finite thermal conductivity of the 

0.44 

0.40 

0.22 

0.24 

plate material allows heat upstream to be conducted 
through the plate, thus changing the mathematical 
character of the problem, to an elliptic one. Assuming 
the plate to have adiabatic leading and trailing edges, 
the overall heat convection through the upper surface 
of the plate governs the evolution of the plate tem- 
perature with time and space. The governing equa- 
tions reduce to a single-parameter integro-differential 
equation. The asymptotic limit of large values for this 
parameter has been explored here. At time equal to 
zero, a heated plate is placed parallel to a fluid flow, 
thus generating a large Reynolds number flow. If the 
initial temperature of the plate is different from that 
of the fluid, heat is transferred via convection from 
the plate to the fluid at an almost uniform rate through 
the plate, at the beginning. Once the thermal boundary 
layer develops, temperature gradients appear in the 
plate, thus making possible the heat conduction 
through the plate. For non-dimensional times much 
smaller than unity, a rapid transient process rep- 
resented by the transition from a uniform temperature 
profile to a pseudo-equilibrium state, takes place. 
Once this pseudo-equilibrium temperature dis- 
tribution is established, the whole temperature of the 
plate decreases at a slow rate, reaching asymptotically 
the uniform temperature distribution equal to the 
IIuid temperature. For large values of a, these tran- 
sient processes at the beginning take place in a short 
time scale. A three-term asymptotic expansion for 

Numwlcal solutlan : - - _ _ 

2 term. Aaymp. rolutlon : - 

Storm. hymp.eo*tion : -.-._. 

0.00 0.20 0.40 0.20 0.00 1.00 
x 

FIG. 7. Non-dimensional temperature profiles for e = I and 7 = 0.5 as obtained by: -, two-term 
asymptotic expansion ; ----, three-term asymptotic expansion ; - - - - - - - -, numerical solution. 
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FIG. 8. Non-dimensional temperature profiles for z = I and r = I .O as obtained by : -. two-term 
asymptotic expansion: ----. three-term asymptotic expansion : - - - - - - - -, numerical solution. 
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FIG. 9. Non-dimensional temperature evolution at both edges for a = 5 (laminar flow) 
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FIG. 10. Non-dimensional temperature at the trailing edge of the plate for aL = 5, for different Reynolds 
numbers and Pr = 1 (turbulent flow). 
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FIG. 1 I. Non-dimensional temperature at the trailing edge of the plate for aL = 100, for different Reynolds 
numbers and Pr = I (turbulent Row). 
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the temperature of the plate is deduced. using the 
multiple-scale technique. This analytical solution for 
the temperature evolution is compared with the 
numerical solution of the intepro-differential 
equation, giving very good agreement for values of z 
close to 5 or larger. For values of LX close to unity. 6% 
error is found. The analysis has been carried out for 
both laminar and turbulent (on smooth plate surface) 
flows. The solution shows that the parameter r has a 
bigger influence in turbulent than in laminar flows. 
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REFROIDISSEMENT CONVECTIF DUNE PLAQUE PLANE ET MINCE DANS DES 
ECOULEMENTS LAMINAIRES OU TURBULENTS 

Rbmn&-On analyse le refroidissement dune plaque plane dans un Ccouiement en prenant en compte la 
conduction longitudinale a travers la plaque. Les equations de bilan d’inergie se reduisent a une equation 
intigro-differentielle a un seul paramitre pour l’evolution de la temperature de la plaque. Une analyse 
asymptotique baste sur la technique d’&chelle multiple est utilisee pour obtenir une solution analytique du 
probltme etudie. Deux tchelles de temps apparaissent dans la limite asymptotique dune plaque par- 
faitement conductrice. Au temps I = 0, la plaque a une temperature differente de celle du fluide est pIa& 
parallelement a l’ecoulement. Pour une conductivite grande mais finie de la plaque. il se produit un 
transitoire rapide et la temperature s’ajuste a une condition de pseudo-equilibre suivie dune evolution 
lente de la temperature de la plaque. On considtre les Ccoulements de couche limite laminaires et turbulents 
et la solution asymptotique a trois termes est cornpan% a la solution numirique. Un tres bon accord est 

constate, m&me pour des valeurs du parametre de transfert thermique de l’ordre de I’unite. 

KONVEKTIVE KtiHLUNG EINER DUNNEN EBENEN PLATTE IN LAMINARER UND 
TURBULENTER STROMUNG 

Zusnmmenfassung-Die Abkiihlung einer Platte in konvektiver Stromung wird untersucht, wobei die 
Lingswlrmeleitung in der Platte beriicksichtigt wird. Fur die Berechnung des Temperaturverlaufs in der 
Platte werden die Energiebilanzgleichungen auf eine einzige einparametrige Integral-Differentialgleichung 
reduziert. Urn eine analytische Liisung des Problems zu erhalten. verwendet man eine asymptotische 
Naherung fur unterschiedliche Zeiten. Zwei Zeitbereiche beschreiben das asymptotische Verhalten einer 
sehr gut warmeleitenden Platte. Bei t = 0 wird parallel zur Stromung eine Platte eingebracht, deren 
Temperatur sich von derjenigen der Fliissigkeit unterscheidet. Bei groger. aber endlicher WarmeleitI%higkeit 
der Platte ergibt sich eine schnelle Temperaturinderung und anschliebend ein Pseudo-Gleichgewichts- 
Zustand. welcher der weiteren langsamen Temperaturentwicklung zugrundegelegt wird. Sowohl laminare 
als such turbulente Grenzschichtstriimung wird heriicksichtigt. und die Losung dritter Ordnung wird mit 
der numerischen Losung des problems verglichen. Eine sehr gute Ubereinstimmung wird sogar dann 

erreicht. wenn der Wirmeubergangsfaktor in der GroDenordnung von eins liegt. 

KOHBEKTMBHOE OXJIAXAEHME TOHKOR I-IJIOCKO~ IIJIACTMHbI B IIAMHHAPHbIX 
II TPSYJ’IEHTHMX ITOTOKAX 

~oTaIWt--AHuH3UpyeTcn npo~~ecc oxJWuJleHHn MOCKO~~ nnac~H~bi a YOHB~YTHBHOM noTOKe c 

yqeroM npononbHoii rennonpoaonHocrn B Hek. &WI 0nHcaHHn H3MeHeHM TeunepaTypu macrHHbl 

ypitenenifn wxpaffennn 3tieprms npn~oaa~cn K onwonapah4eTpWWcroMy miTerpo-m+#qeHuHanbnoMy 

ypasnenHm. ,Qn nonyreHun ananHTHYeCYor0 pemeHW4 3anau5i Hcnonb3yeTcn acHhmroTHqecrwl ananH3 

Ha ocHoBe Merona MHOXRCT~~HH~IX MacmTa6oB. B acmMmoTHqezxob+ rrpenene nnacr~~t.i c xopomel 
reu.ironposommcrbm nonunniorcn xsa speMeuublx MacmraBa. llp~ 3HaqetiHH apeb4eHH t = 0 MacTHHa 

c TeMnepaTypofi, ornsiuHo8 OT reMnepaTypbI xzHpIocr~, ycraHaanMsaerca napamenbeo noTory IKHn- 

~ocrH. B cnysae 6onbuuix, HO xouexubxx 3HaqeHHg ro3@nL@teHTa TennonposoJuiocrH nnac’ruHbi 803- 

HHKaeT Bsrcrpo npoTeralot!@n iieycTO&IHBOCTb, H H3MeHeHHe TeMnepaTypbI IIpHXOrUrT K 

raa3HpaBHoBecHoMy pexrrbty c xaparc7epHbtM htezlnexHblh4 ee H3MeHeHHeM. PaccMaTpnsatoTcn icaK 

nakninapuoe, -ray H ryp6yseurrioe Teqeuun n norpamnmok4 cnoe, H nposomucn cpasuemie Tpexwew 
tioro acHhmro~qec~or0 pemeHHn c xucneririMM pememieM onpeaennmmero ypaaHeHHn. lIonyreH0 

0qeHb xopomee CooTaeTCTaHe naxe nnn 3HaqeHMi napaMe-rpa Tennonepenoca nopnnwa enminuhl. 


