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Abstract—This paper deals with the analysis for the cooling of a flat plate in a convective flow. taking
into account the longitudinal heat conduction through the plate. The energy balance equations reduce to
a single one-parameter integro-differential equation, for the evolution of the temperature of the plate. An
asymptotic analysis based on the multiple scale technique is used in order to obtain an analytical solution
of the studied problem. Two time scales appear in the asymptotic limit of a very good conducting plate.
At time ¢ = 0, the plate at a temperature different from that of the fluid is placed parallel to the fluid
stream. For large but finite plate thermal conductivity, a rapid transient generates and the temperature
adjusts itself to a pseudo-equilibrium condition, needed for the slow further evolution of the plate tem-
perature. Both laminar and turbulent boundary layer flows are considered and the three term asymptotic
solution is compared with the numerical solution of the governing equation. A very good agreement is
achieved even for values of the heat transfer parameter of the order of unity.

INTRODUCTION

THE sTUDY of the coupled heat transfer processes
between heat convection and heat conduction is very
important because of the simuitaneous effects in prac-
tical heat transfer processes. The effect of wall heat
conduction on convective heat transfer, has been ana-
lysed in ref. [1]. Luikov [2] and Payvar [3] analysed
the problem where the lower surface of a flat plate of
finite thickness is maintained at a constant and uni-
form temperature. At the upper surface of the plate,
heat is convected to a laminar boundary layer. Luikov
[2] made two approximate solutions, one based on a
differential analysis with low Prandtl number and the
second based on an integral analysis with polynomial
velocity and temperature profiles. He concluded that
for Brun numbers larger than 0.1, the plate thermal
resistance can be neglected. Payvar [3] used the Light-
hill approximation [4] for large Prandtl numbers, to
obtain an integral equation which has been solved
numerically. He obtained asymptotic solutions for
large and small Brun numbers. Axial conduction was
not taken into account, in both these works. Heating
(or cooling) of a flat plate in a convective flow was
analysed by Sohal and Howell [5] and Karvinen [6].
In both of these works. the Lighthill approximation
has been employed and an integro-differential equa-
tion for the plate temperature evolution has been
derived. In ref. [5]. a numerical technique has been
used to solve this equation. Karvinen [6] used an
iterative method to solve the integro-differential
equation for both steady-state and transient cases. He
obtained good agreement with experimental results.
Perturbation techniques in order to solve analytically
the integro-differential equation resulting from the
externally heated flat plate in a convective flow were
used in ref. [7]. This equation has only one parameter,
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a, defined as the ratio of the thermal resistance of the
fluid to that of the plate. For large values of this
parameter (very good conducting plate). a regular
perturbation approach is applied using 1/x as the
small parameter of expansion. On the other hand. for
very small values of this parameter, a singular per-
turbation technique has been employed (matched
asymptotic expansion) in order to study the plate
temperature evolution. The leading term of the expan-
sion (2 = 0) has a self-similar solution and the integral
equation has been numerically solved. For small
values of « two boundary layers develop at both edges
of the plate. These boundary layers, however, have
only local effects and the leading order solution give
accurate results for small values of o even for this
singular problem. For « = 0, the cooling process has
been analysed in ref. [7]. However, for the case of large
values of a the cooling process cannot be analysed
using the same regular perturbation techniques used
in that paper [7], because this series breaks down in
the first-order terms.

The objective of the present work is to study this
cooling (or heating) process, for both laminar and
turbulent flow over a smooth surface, using multiple
scale analysis due to the generation of rapid transients
during the process.

FORMULATION

The physical model analysed is the following. A
thin flat plate of length L, thickness 24 at initial tem-
perature T, is placed paraliel in a forced flow of an
incompressible fluid with velocity U, and tem-
perature T, at time ¢ = 0. The thermal conductivity
of the plate material enables heat conduction through
the plate. Both edges of the plate are assumed to
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L length of the plate

Nu  Nusselt number, —g.x/[(Ty
Pr Prandtl number, (uc/4),

. heat flux transferred by convection

Re Reynolds number of the flow, U, p,L/u,

- Tx)}vg]

Re. critical Reynolds number

s non-dimensional strained time defined
after equation (14)

t time

t characteristic time defined in equation (10)

T, temperature of the plate

T,, initial temperature of the plate
T, fluid temperature far from the plate
U,  fluid velocity far from the plate

x,y  Cartesian coordinates.
Greek symbols
o non-dimensional parameter defined in

equation (9)

NOMENCLATURE
cy specific heat of fluid oy value of o for laminar flow
¢ specific heat of the plate material A7 value of a for turbulent flow
g non-dimensional function introduced in € small parameter of expansion defined in
equation (21) equation (12)
h half thickness of the plate n non-dimensional transversal coordinate

defined in equation (2)

o, non-dimensional plate temperature
defined in equation (2)

g thermal conductivity of the fluid

A thermal conductivity of the plate material

I viscosity coefficient of the fluid

Ds density of the plate material

o non-dimensional fast time variable
defined after equation (14)

T non-dimensional time defined in
equation (2)

T non-dimensional time for laminar flow

T non-dimensional time for turbulent flow

X non-dimensional longitudinal coordinate
defined in equation (2)

Ye position of the transition region

; constants introduced after equation
(14).

be adiabatic, for simplicity. For small times, heat is
transferred to the fluid in a uniform way. As the ther-
mal boundary layer develops, a temperature gradient
is produced in the plate, thus conducting heat
upstream. Finally, this heat is transferred to the fluid
in regions close to the leading edge. The energy bal-
ance equation in the plate is

62T, /0x*+ 07T, [0y = pycyfAs 0T, /0t %))

where T, corresponds to the plate temperature ; x and
v correspond to the Cartesian coordinates longi-
tudinal and transversal, respectively. The origin is
located in the upper surface of the plate at the leading
edge. The time is designed by 1. p,, ¢, and A, correspond
to the density, specific heat and the thermal con-
ductivity, respectively. The boundary and initial con-

ditions are given by
T,=Typatt=0; éT,/ox=0atx=0andL;
4 0Tof6y = —g. aty=0; 0T, /éy=0aty= —h

where ¢ corresponds to the heat convected to the fluid
in the upper surface. Introducing the following non-
dimensional variables:
{)p:(Tp—Tj)/(Tp{)—Tx)v X=X/L,
n=ylh; t=1t. (2
equation (1) takes the form

(B L)2820,)0x* +8°0,/0n° = [pseh®[(A,1.)}) 80, /0t.

3)

The characteristic time 7, is defined later. Due to the
fact that the non-dimensional temperature of the plate
is a function of 0, = 0,(x.n.7), it is convenient to
introduce a simplification that makes possible an ana-
lytical solution of the studied physical problem. We
suppose that the temperature of the plate is a function
of the longitudinal coordinate y and time 7, in a first
approximation. The restrictions associated with this
approximation are pointed out later. In this case, we
assume that 6, is given by

0,001, 7) = 0o(x, 1) +80, (X, 1. 1)+ Oe?) (&)

where ¢ is a small number compared with unity, to be
defined later. Introducing relation (4) in equation (3),
this equation transforms to

(h/ LY [0 00/0y” + 6620, /0 + - -]
+e820, (007 + 62020, /0n7 + -+
= {p.c Gt 00,0+ 660, jdt+ -} (5)

Integrating equation (5) in the form

J:)[]dn

and neglecting terms of higher order, we obtain in a
first approximation

(/L) E04/0%° — (Nujx) (A, A)(H/L)
= p.c (i) 804/0T.  (6)

In this equation, both boundary conditions at v = 0
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and —h have been applied. The Nusselt number Nu
is given by

Nu= _qcx/[(TpO - Tx )/'g]

where 4, represents the fluid thermal conductivity.
Due to the fact that the characteristic times in the
fluid are in general very small compared with the
characteristic times in the solid, we can assume the
quasi-steady approximation in the fluid phase. The
solution of the energy equation in the fluid can be
obtained using the asymptotic Lighthill approxi-
mation, derived for the case of small thermal bound-
ary layer thickness compared with the momentum
boundary layer thickness. The Nusselt number can be
given as

(]
Nu=a Pr" Re" X”|:9|+J K, ) de'jl )
il

where Pr is the Prandtl number, Pr = p,c,/4,, and Re
the Reynolds number based on the length of the plate,
Re = U_p,L/u,. The subscript 1 represents the con-
ditions at the leading edge of the plate. The kernel of
the integral in equation (7) is given by

K x) = {1-('/0"

The constants a, b, ¢, n and m depend on the flow
characteristics. Table 1 gives the values for the laminar
and turbulent boundary layer flows over a smooth
plate.

Introducing equation (7) in equation (6) gives

« 0%0/0y* = 06/t + [9. +f K(x.x) dﬂ’}/(x)'“"-
6,

®)

Here, the subscript 0 has been taken out for simplicity.
The integro-differential equation (8) gives the evol-
ution of the temperature of the plate and contains
only one parameter « defined as

a = (h/L)(A/7)(a Pr" Re") ™. 9)

This parameter represents the relation between the
heat conducted through the plate to that convected to
the fluid. For & > 1 the heat conducted through the
plate is very large, thus not admitting large tem-
perature longitudinal gradients. On the other side, for
o < 1, the heat convection to the fluid is the most
important. The characteristic time ¢z, then is given by

t. = hLp,clai, Re" Pri]™". (10)

Table 1

Laminar flow Turbulent flow

a 0.332 0.0287
b 3/4 9/10
¢ 13 19
m 1/3 3/5

n 12 8/10
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Integrating equation (5) now in the form

L[]dx

this equation reduces in a first approximation

séz/énz{f 9, dx}

1
= p,c.h?/A dtjdt 5/61{-[) Bodx}. (1

From this relation we can obtain the definition for &
as

¢ = a(h/L)(44/4) Re' Pr" « 1. (12)

Equation (12) gives the restriction in using the
approximation introduced previously. From equa-
tions (9) and (12), the value of « has to be much
greater than (4/L)* which gives us a wide range in the
validity of the approximation introduced. The initial
and boundary conditions are given by

8(x.0)=1 and 90/dx=0 at (13)

The temperature of the plate is then 6 = F(y, 1, ).
The solution of the integro-differential equation can
be obtained in the asymptotic limits, «a > 1 and o « 1.
In the following section, the asymptotic limit & > 1 is
obtained

x=01

ASYMPTOTIC LIMIT «»1

For large values of a the plate temperature varies
little in the streamwise direction. A regular expansion
of the form

o

0 =0+ Y 1//8,(x, 1)
j=1
breaks down in terms of the order of 1/x, because the
appearance of transients of the order of 1/x in the
non-dimensional time. The solution can be obtained
using the multiple scale analysis, assuming the fol-
lowing expansion :

0 =04+ ‘z 1/a/0 (¥, s, @) (14)
j=1

where

s=t(l+w,jfat+w,/a’ -); 6=or

represent the two time scales presented in the problem.
The constants w, appear in order to cancel the secular
terms arising in the solution. Introducing equation
(14) into equation (8) we obtain the following set of
equations :

0%0,/0%* — 00,/60 = 0
az0_/+ 1o —06,,,/0a

= 30,/0s+@,00,_,/ds+ -

(15)

+[0,.+£ "KL d9_’,:|/(x)"" forallj. (16)

ni
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The boundary conditions are given by

0o(x.0.0)=1; 0,(3.0.0)=0 for j>0

60;/i0y =0 at x =01 forall .

The solution of equation (15) together with the
boundary conditions gives that 8, = 6,(s). The first
equation in equation (16) is given by

20, /¢x> —30,/06 = dO,/ds+0,/(x)' . (17)

Integrating equation (17) in the form

J[]dx
0

and applying the adiabatic boundary conditions at
both edges of the plate, we obtain

—6/60f 0, dy = df,/dt+ (1/n)6,. (18)

The equality has to be zero in order not to allow
the appearance of secular terms. Applying the initial
condition for 8,, the solution of equation (18) is given

by
0, = exp (—1/n). (19)

Below we will concentrate on the laminar case, giving
only the final results for the turbulent case. For the
laminar boundary layer, equation (17) takes the form

3%0,/éx> 00, /60 = B,[1/()"* 2. (20)

The initial and boundary conditions for 6, are given
by

91(){_,0,0) = 0-

In order to reduce equation (18) to a homogeneous
differential equation it is convenient to introduce the
function g(%. o) in the following way :

00,/ox =0 at x=0,1.

01 = 0o[4/3%>* =%’ +g(x. 9. 1)
The equation for g is then given by
¢ g/éy’ —dgica =0 (22)
with the initial and boundary conditions
g(x.0=0) =7 —4/3x*%;
cgioy =0 for x=0,1. (23)

The solution of equations (22) and (23) can be obtained
with the help of the Fourier transform method, giving

g(x.o) = Z a;cos (mjy)exp (—j’n’a) (24)

=4

with the Fourier coefficients, a, given by
I
a; = b,f [x*—4/3y**] cos (jrx) dx
0

where b, = 1 and b, = 2 for j > 0. Evaluating these
coefficients, the solution for 0, is therefore

A. VaLLeio and C. TrREVINO

0,(x,5.06) = [—1/5—1-4/3)(3 x4+ Q2

x Y cos(mjy)exp(—jna)ijn)’ 2Jexp(*ls).
|

(25)

The equation for 6, is

= —-200{w.—l,/5+4/3x“'3—x3+\/’(2n)
x Y cos(mjx)exp (— j*ma)/(jn)*?
j=1
—1//(4y) [ -1/5+/(@2n)

x Z exp(—jznza)/(jn)5'2]}+00/"\/XJ; K(x.x")

j=1

x [—21’+2\/x'—\/(2n) i sin (77)

i=1

x exp { —fvr:o)/(jm“J dy’. (26)

Integrating equation (26) in the streamwise direction
from the leading edge to the trailing edge and applying
the adiabatic boundary conditions at both edges, we
obtain

1
—a/aaf 0,dy =
4]

~200{w, + 1/5+8/156(8/3,2/3) —2/3B(2,2/3)}

—(2m0, ¥ exp(—j'nie)/(jn)*?

j=

!
x {— 4/(3jm) J V' cos (jmy'ydx'+1/(jm)
0

| 1
+ 1/(4jn)f x““[[ '~ cos (jnx) dx’] dx}
0 0

27

Secular terms arise for the non-vanishing value
between brackets in the first term on the right-hand
side of equation (27). Therefore. w, is

w, = —1/S—8/15B(8/3.2/3)+2/3B(2,2/3)
~ +0.009893.

Figure 1 shows ), e*" as obtained from the numerical
solution of equation (26), for different values of the
non-dimensional time ¢. In the case of turbulent flow,
it can be shown, following the same procedure, that
the non-dimensional temperature of the plate up to
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FiG. 1. Evolution of the second-order term, 6,/6,, as a function of y for different values of the non-
dimensional fast time o.

first order, can be written as

0y, s,0) = exp(-Ss/4){1 + l/aI:—S/sz

+25/36%° —5/126+0.71953 3 cos ()

J=1

x exp (— j*n*0)/(jm) ”"’]}+ 0(1/a®) (28)

and @; = 0.00072672. It is to be noted that «, s and
o are defined differently in both cases, laminar and
turbulent boundary layer. In the next section we will
present the numerical calculations obtained by solving
the integro-differential equation and compare it with
the asymptotic soiution deduced in this section.

RESULTS AND DISCUSSION

For large values of a, that is « — oc, equation (19)
gives the non-dimensional temperature of the plate as
a function of the non-dimensional time. Due to the
fact that « and the characteristic time are not defined
in the same way, for laminar and turbulent boundary
layers, it is convenient to relate one to each other as

oy = [11.56794Pr=*"'5 Re™3'0)a

where ar and «,, correspond to the values of a for
turbulent and laminar flow, respectively. In the same
form, we can relate the non-dimensional times t used
for both laminar and turbulent flows as

tr = [0.086445Pr*''* Re* %1, .

In this asymptotic limit, « — oo, the ratio of the tem-
peratures of the plate cooled by turbulent and laminar
flows is given from equation (19) as

0:/6, = exp {2—0.1080562Pr*'* Re*'°}1,. (29)

Figure 2 shows this ratio as a function of the non-
dimensional time 7 defined for laminar flow (1), for
different Reynolds numbers and Prandtl number of
unity. Of course this is valid if the whole boundary
layer is either laminar or turbulent. As the Reynolds
number increases, the plate temperature decreases fas-
ter in comparison with the laminar case. If the Reyn-
olds number is only slightly larger than the critical
Reynolds number of the flow, both types of flow struc-
tures coexist—laminar flow upstream of the tran-
sition zone and turbulent flow downstream. Assuming
this transition zone to be very small compared with
the length of the plate, in the limit o - oo we have
that the governing equation is given by

@, 0°0/0%* = 00/dt_ +6//x, for 0 <y <7y (30)
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FiG. 2. Non-dimensional temperature ratio (turbulent/laminar) for different Reynolds numbers and
Pr = 1.1n the limit x - oc.

ar020/0y* = 80/ct + 0/ "0, for xo <x <1  (31)

where . corresponds to the position of the transition
region (Re = Re.). Integrating equation (30) in the

form
X
L [ 1dx

and equation (31) in the form

J[]dx

and applying the adiabatic boundary conditions at
both edges, we obtain

2,80/exl,, = 80/t Yo +204/%, (32)

—ar80/0xl, = 60/0t:(1—x) +10/80(1 —x'"). (33)

Because of the continuity of the plate temperature and
the heat flux at the position of the transition zone, we
obtain from equations (32) and (33), the evolution
equation for the plate temperature as

d0/dz [x. + (o for) (T /T (1 — X))

= —0[2\/x. +10/8(au o) (1 = x& )]
the solution to which is given finally by
6 = exp { —[2/x. +0.1080572Pr*?

x Re¥' (1= ]e ). (34)

For y. = 0 we recover the pure turbulent flow and for
¥e = | the laminar flow solution is reproduced.

Figure 3 shows the non-dimensional temperature
profiles as a function of y, for three different values
of a, for t = 0.05, for the laminar flow. For a = 100,
the temperature is uniform and the leading term in
the asymptotic expansion gives the temperature evol-
ution. However, for values of « = 1, there is an impor-
tant temperature difference between the leading and
trailing edges of about 12%., due to the finite thermal
conductivity of the plate material. For « = 5, a tem-
perature difference, between both edges, of about 5%
is found from the two-term asymptotic solution given
by equations (19) and (25). The corresponding solu-
tion to turbulent flow is given in Fig. 4. Though the
trends are found to be qualitatively the same for both
laminar and turbulent flows, the crossing point of the
non-dimensional temperature profiles with that given
for large « (or o), is shifted to the leading edge in the
case of turbulent flow, thus indicating that the effect
of the thermal conductivity of the plate is larger for
turbulent flow. For larger values of «y, the cooling
effect is more effective for turbulent flow.

Figure 5 shows the comparison of the two-term
asymptotic expansion with the numerical calculation
of the integro-differential equation, for a =5 and
different non-dimensional times, for the case of a lami-
nar flow. The numerical technique used for solving
the integro-differential equation (8), is described else-
where [8]. The asymptotic analysis gives very good
results for values of o = 5. The error introduced in
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FiG. 3. Non-dimensional temperature profiles for different values of « at r = 0.05 (laminar flow), as
obtained with the two-term asymptotic expansion.
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F1G. 4. Non-dimensional temperature profiles for different values of a; at 7, = 0.05 (turbulent flow).
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Fic. 5. Non-dimensional temperature profiles at different times, for « = 5 (Jaminar flow) : . asymp-
totic solution ; ~----- , numerical solution.
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FiG. 6. Non-dimensional temperature profiles at different times, for « = 1 (laminar flow} : -
totic sofution; - - - --- . numerical solution,
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this case is not larger than 3%. The cascof a =1 is
shown in Fig. 6. In this case, the errors introduced are
much larger than in the previous case, giving errors
of the order of 6%. A new term in the asymptotic
expansion is needed for values of o close to unity.
Figures 7 and 8 show the influence of the third term
in the asymptotic expansion on the temperature evol-
ution for « = 1 and two different times. It is shown
here that the three-term asymptotic expansion repro-
duces the numerical solution in portions of the middle
of the plate. Still a difference 1s noted at both edges of
the plate. Figure 9 shows the non-dimensional tem-
peratures at both edges as a function of the non-
dimensional time, for o = 5 and laminar flow. This
temperature difference between both edges, remains
of the same order as 7 increases. For values of 7 > 3,
practically the temperature of the plate reaches the
stream temperature. Finally, Figs. 10 and 11 show the
. non-dimensional temperature evolution in the trailing
edge of the plate for two different values of &, (5,100),
exposed to a turbulent boundary layer flow, for
different Reynolds numbers and a Prandtl number of
unity.

CONCLUSIONS

In this paper, the cooling process of a flat plate in
a convective flow, has been analysed using asymptotic
techniques. The finite thermal conductivity of the
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plate material allows heat upstream to be conducted
through the plate, thus changing the mathematical
character of the problem, to an elliptic one. Assuming
the plate to have adiabatic leading and trailing edges,
the overall heat convection through the upper surface
of the plate governs the evolution of the plate tem-
perature with time and space. The governing equa-
tions reduce to a single-parameter integro-differential
equation. The asymptotic limit of large values for this
parameter has been explored here. At time equal to
zero, a heated plate is placed parallel to a fluid flow,
thus generating a large Reynolds number flow. If the
initial temperature of the plate is different from that
of the fluid, heat is transferred via convection from
the plate to the fluid at an almost uniform rate through
the plate, at the beginning. Once the thermal boundary
layer develops, temperature gradients appear in the
plate, thus making possible the heat conduction
through the plate. For non-dimensional times much
smaller than unity, a rapid transient process rep-
resented by the transition from a uniform temperature
profile to a pseudo-equilibrium state, takes place.
Once this pseudo-equilibrium temperature dis-
tribution is established, the whole temperature of the
plate decreases at a slow rate, reaching asymptotically
the uniform temperature distribution equal to the
fluid temperature. For large values of a, these tran-
sient processes at the beginning take place in a short
time scale. A three-term asymptotic expansion for

0.44
©

0.40 - T
0.36 -
032 Numerical solution & - — —

i 2 term. Asymp. solution : ————

3term. Asymp,solution : —.—. ..
0.28-
0.24 ] 1 v 1 4
0.00 0.20 0.40 0.80 0.80 .00
FiG. 7. Non-dimensional temperature profiles for « = 1 and t = 0.5 as obtained by: , two-term

asymptotic expansion ; ————, three-term asymptotic expansion; -------- , numerical solution.
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FiG. 8. Non-dimensional temperature profiles for « = | and t = 1.0 as obtained by: . two-term
asymptotic expansion ; ———-—, three-term asymptotic expansion; ~------- . numerical solution.
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FiG. 9. Non-dimensional temperature evolution at both edges for « = 5 (laminar flow).
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F1G. 10. Non-dimensional temperature at the trailing edge of the plate for &, = 5, for different Reynolds
numbers and Pr = 1 (turbulent flow).
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FiG. 11. Non-dimensional temperature at the trailing edge of the plate for a; = 100, for different Reynolds
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the temperature of the plate is deduced. using the
multiple-scale technique. This analytical solution for
the temperature evolution 1s compared with the

nummeil lLdl

lilngIU UlllCItIllldl
equation, giving very good agreement for values of
close to 5 or larger. For values of « close to unity, 6%
error is found. The analysis has been carried out for
both laminar and turbulent (on smooth plate surface)
flows. The solution shows that the parameter « has a
bigger influence in turbulent than in laminar flows.
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REFROIDISSEMENT CONVECTIF D'UNE PLAQUE PLANE ET MINCE DANS DES
ECOULEMENTS LAMINAIRES OU TURBULENTS

Résumé—On analyse le refroidissement d'une plaque plane dans un écoulement en prenant en compte la
conduction longitudinale 4 travers la plaque. Les équations de bilan d’énergie se réduisent a une équation
intégro-différentielle 2 un seul paramétre pour I'évolution de la température de la plaque. Une analyse
asymptotique basée sur la technique d’échelle multiple est utilisée pour obtenir une solution analytique du
probléme étudié. Deux échelles de temps apparaissent dans la limite asymptotique d'une plaque par-

faitement conductrice. Au temps ¢ =

parn"&lpmpn' a Pécoulement. Pour un

transitoire rapide et la température

0, la plaque a une température différente de celle du fluide est placée

o conductivité orande mais finie de la nlague
uRe CONQUCLIVIIC grande mais ini¢ G¢ .a p.aque,

il ca nrodunit
1 8¢ proGull un

s’ajuste & une condition de pseudo-équilibre suivie d’une évolution

lente de la température de la plaque. On considére les écoulements de couche limite laminaires et turbulents
et la solution asymptotique a trois termes est comparée & la solution numérigue. Un trés bon accord est
constaté, méme pour des valeurs du paramétre de transfert thermique de ’ordre de I'unité.

KONVEKTIVE KUHLUNG EINER DUNNEN EBENEN PLATTE IN LAMINARER UND
TURBULENTER STROMUNG

Zusammenfassung—Die Abkiihlung einer Platte in konvektiver Stromung wird untersucht, wobei die
Lingswirmeleitung in der Platte beriicksichtigt wird. Fiir die Berechnung des Temperaturverlaufs in der
Platte werden die Energiebilanzgleichungen auf eine einzige einparametrige Integral-Differentialgleichung
reduziert. Um eine analytische LOosung des Problems zu erhalten. verwendet man eine asymptotische
Naherung fiir unterschiedliche Zeiten. Zwei Zeitbereiche beschreiben das asymptotische Verhalten einer
sehr gut warmeleltenden Platte. Bei + =0 wird pdrallel zur Stromung eine Platte emgebracht deren

l Clllpcldlul bl\rll VUL UCIJCI“ECH ULl l lub

. 3l
I\Cll unterscheidet. Bei gr chl aber endlicher Warm lllClCllldlllsl\Ull

der Platte ergibt sich eine schnelle Temperatumnderung und anschlieBend ein Pseudo-Gleichgewichts-
Zustand. welcher der weiteren langsamen Temperaturentwicklung zugrundegelegt wird. Sowohl laminare
als auch turbulente Grenzschichtstrémung wird beriicksichtigt, und die Lésung dritter Ordnung wird mit

der numerischen Lésung des problems verghchen. Eine sehr gute Uberelnstlmmung wird sogar dann
erreicht, wenn der Wirmeiibergangsfaktor in der Gré8enordnung von eins liegt.

KOHBEKTUBHOE OXJIAXAEHHUE TOHKOH MJNOCKOHN IVIACTUHbBI B TAMHHAPHbIX
W TPBYJIEHTHBIX MTOTOKAX

ARBOTSIHS—AHAM3NPYETCA MPOLECC OXNAXIACHHS IUIOCKOR IJIACTHHBI B KOHBEKTHBHOM [OTOKE C
YYETOM TNpPOIOAbHOH TEMRONPOBOAHOCTH B Hell. JUIA ONMHMCAHHA H3MCHEHHH TEMMEpPaTypbi MNACTHHBI
yPaBHEHHA COXPRHEHHA JHEPIHE NPHBOASTCS K OJHONAPaMETPHYECKOMY HHTETPO-AHPHEpeHLHANBHOMY
ypaBHenmo. JIna noayyeHHs aHATHTHYECKOrO PELlieH!s 3a1a%H HCOJIB3YETCR aCHMIITOTHYECKHIA aHau3
Ha OCHOBE METOJ3a MHOXECTBEHHMX MacilITaboB. B acHMITOTHYeCKOM TIpEAESC ILIACTHHEI € XOpoineH

e o on s L Tz o TR e raTreer T asnnveeofio

TTemer arsnwatrny nnareaun ¢ — ) nnacTuua

TEIJIONPOBOAKOCTRIO MUABIAIOTCA [iBa BpCMEHHDIX MaCLITava. 1apH 3HAMCHAN BPOMCEE [ = U ILIACTHHA
c TeMnepaTypoi OT/HYHOH OT TeMInepaTypbl XKHAKOCTH, YCTAHABJIMBACTC NApaUIENIbHO NOTOKY XHA-
xocTH. B criydae 60nBIIMX, HO KOHEUHLIX 3HA4YCHHH xo>hduiineHTa TEMIONPOBOIHOCTH IJIACTHHBLI BO3-
HHKaeT OBICTPO NpOTEKAIOMAN HEYCTOHYHBOCTD,
KBAa3HPABHOBECHOMY PCXKHMY C XapakTepHBIM MCUICHHBIM ©¢ H3IMECHCHHEM. Paccuanunmonﬁ KakK
JJAMHHAPpHOE, TaK H Typﬁynen'moe TE€YEHHA B MOTPAHUYHOM CJI0€, H MPOBOAUTCA CPABHCHHUC TPEX4JICH-
HOrO ACHUMITTOTHYECKOrO PEelICHHR C YHCJICHHBIM PCUICHHEM ONpEACAIOUIErO YPRBHCHHS. l'lonyqeno
O4YCHb XOPOIlUeC COOTBETCTBHE AAXE AJIA 3HaYCHUH napamMeTpa TenjIonepeHoca nNopanka eInHANLL.

H H3MCHEHHC

TeMNepaTypsl TNPHXOMHT K



